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Abstract: Speech emotion recognition is a critical component for achieving natural human–robot
interaction. The modulation-filtered cochleagram is a feature based on auditory modulation per-
ception, which contains multi-dimensional spectral–temporal modulation representation. In this
study, we propose an emotion recognition framework that utilizes a multi-level attention network to
extract high-level emotional feature representations from the modulation-filtered cochleagram. Our
approach utilizes channel-level attention and spatial-level attention modules to generate emotional
saliency maps of channel and spatial feature representations, capturing significant emotional channel
and feature space from the 3D convolution feature maps, respectively. Furthermore, we employ
a temporal-level attention module to capture significant emotional regions from the concatenated
feature sequence of the emotional saliency maps. Our experiments on the Interactive Emotional
Dyadic Motion Capture (IEMOCAP) dataset demonstrate that the modulation-filtered cochleagram
significantly improves the prediction performance of categorical emotion compared to other eval-
uated features. Moreover, our emotion recognition framework achieves comparable unweighted
accuracy of 71% in categorical emotion recognition by comparing with several existing approaches.
In summary, our study demonstrates the effectiveness of the modulation-filtered cochleagram in
speech emotion recognition, and our proposed multi-level attention framework provides a promising
direction for future research in this field.

Keywords: categorical emotion recognition; auditory signal processing; modulation-filtered
cochleagram; multi-level attention

1. Introduction

The Internet of Everything (IoE) presents a plethora of opportunities for human–robot
interaction (HRI), and incorporating emotion information can significantly improve the
robot’s ability to comprehend human intentions during HRI. Emotion information can
be obtained through various means, such as speech, facial expressions, gestures, and
electroencephalography (EEG) [1]. Among these, speech is the most natural and convenient
communication mode between humans and robots. Therefore, speech emotion recognition
(SER) holds immense potential for diverse applications in HRI, such as intelligent driving,
service robotics, online education, telemedicine, and criminal investigations [2].

The extraction of emotional features is one of the key technologies in SER. The com-
monly used emotional features mainly include: hand-crafted low-level descriptor (LLD)
and its high-level statistical features (HSF) [3], Mel filterbank features [4], spectrogam [5,6],
etc. However, researchers have not identified the best speech features for SER and still
explore the effective features that can represent emotional states [7]. Humans can easily
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perceive emotional information and its changes through the auditory system. Sounds
reach the auditory cortex after passing through several auditory signal processing stages,
which then perceives differences in intensity and tone to produce varying psychological
responses. Therefore, identifying emotions from the perspective of auditory perception
could be an effective approach. However, the human auditory system is highly complex,
and the mechanisms of signal processing are not yet fully understood. To address this,
researchers have developed functional models of the auditory system based on its char-
acteristics, such as the models of the cochlear basilar membrane, the inner hair cell, the
nerve conduction, and the auditory center. These models are mainly applied in a cochlear
implant, hearing aid, sound source positioning, speech enhancement [8], and other areas,
yet limited studies have explored auditory perception and understanding. Psychoacoustic
research reveals that speech signals are decomposed into spectral–temporal components in
the cochlea and are subject to spectral–temporal modulation through the auditory pathway,
generating a modulation spectrum [9]. This modulation spectrum plays an essential role in
speech perception and understanding [10,11]. Several studies have used statistical func-
tions on the modulation spectrum to obtain modulation spectral features (MSF) for SER
tasks [12]. Avila et al. [13] proposed a feature-pooling scheme for dimensional emotion
recognition using a combined MSF and 3D modulation spectrum representation. Recent
research shows that cochleagrams have more advantages in SER than features such as
spectrograms [14,15]. Peng et al. [16] proposed a modulation-filtered cochleagram (MCG)
feature to extract high-level auditory representations for dimensional emotion recognition.
The experimental results showed excellent performance in terms of arousal and valence
prediction, but the effectiveness of this feature in categorical emotion recognition requires
further improvement.

In order to extract high-level feature representations from speech features, deep learn-
ing methods, such as convolutional neural network (CNNs), recurrent neural network
(RNNs), and transformers, are mainly used for the SER task [17,18]. CNNs are often used
to extract high-level speech feature representation due to their scale and rotation invari-
ance [19]. RNNs, including long short-term memory (LSTM) [20], are commonly employed
to capture sequence dependencies owing to their ability to handle long-term dependen-
cies in the speech sequence [21]. Recently, attention mechanisms have been incorporated
into deep learning methods to automatically capture salient emotion features in speech
sequences. Neumann et al. [4] proposed an attentive CNN (ACNN) based on the attention
model to identify emotions from the log-Mel filterbank features. Mirsamadi et al. [22]
introduced an attentive RNN (ARNN) model to recognize emotions from frame-level LLDs,
with local attention as a weighted pooling method. Peng et al. [23] proposed an attention-
based sliding recurrent neural network (ASRNN), which mimics the auditory attention
to effectively model the auditory representation sequence and capture salient emotion
regions. Moreover, the transformer employs a self-attention mechanism in conjunction
with RNN-based encoder–decoder architecture to track the context relations in the sequence
data. Chen et al. [8] introduced a Key-Sparse Transformer, which dynamically judges the
importance of each frame in the speech signal, so as to help the model pay attention to the
emotionally related fragments as much as possible.

Some novel attention models, such as channel attention and spatial attention, are
proposed for image recognition and behavior detection. Channel attention focuses on
determining the importance of different channels and has been employed in models, such
as SE-Net [24], SK-Net [25], and ECA-Net [26]. Spatial attention transforms information
into another space through a spatial conversion module to retain key information. Notable
examples of spatial attention models include A2-Net [27], DANet [28], and convolutional
block attention module (CBAM) [29]. In addition, researchers have developed multi-level
attention models that operate in different dimensions. Ma et al. [30] introduced TripleNet,
a model that employs a hierarchical representation module to construct representations
of context, reply, and query in multi-turn dialogues. The triple attention mechanism is
utilized to update these representations. Liu et al. [31] proposed TANet for speech dialogue
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and object detection, which considers triple attention at the channel, point, and voxel.
Jiang et al. [32] proposed a convolutional-recurrent neural network with multiple attention
mechanisms for SER. This method employed the multiple attention layer to calculate the
weights for different frames and features and a self-attention layer to calculate the weights
from Mel-spectrum features. Liu et al. [33] proposed a novel multi-level attention network
comprising a multiscale low-level feature extractor and a multi-unit attention module for
SER. Zou et al. [34] proposed an end-to-end speech emotion recognition system using multi-
level acoustic information with a newly designed co-attention module. These methods
leverage multiple attention models to extract different channel and spatial attention maps
from LLDs, spectrograms, and waveforms and subsequently fuse these attention maps to
recognize emotions. However, they do not consider the capture of significant emotional
regions in speech sequences using temporal attention.

The MCG features include multi-dimensional spectral–temporal feature representa-
tions of acoustic, modulation, and temporal attributes, considering that channel attention
and spatial attention are efficient ways to extract high-level features from high-dimensional
space, and temporal attention can effectively capture the significant emotional parts in
speech feature sequences. To address the efficiency problem of high-dimensional fea-
ture extraction in MCG features, this paper proposes a categorical emotion recognition
method that employs a multi-level attention network to extract salient information from
modulation-filtered cochleagram features. Firstly, a 3D CNN is used to extract high-level
auditory feature representation from modulation-filtered cochleagram. Then, the channel-
level attention module is used to capture the dependence of the channel structure from
the 3D convolution feature map; the spatial-level attention module is used to capture the
dependence of the spectral–temporal spatial structure of the feature representation. Finally,
a temporal-level attention module is used to capture the significant emotional regions from
the concatenated feature sequence derived from the channel and spatial attention map.

The major contributions of this study are as follows:

• Using the same convolutional recurrent neural network, the MCG features perform
better than other evaluation features in categorical emotion recognition.

• The multi-level attention network is proposed for improving emotion recognition
performance, in which channel-level and spatial-level attention modules obtain fused
features from MCG features, and temporal-level attention further captures significant
emotional regions from fused feature sequences.

• The proposed method is evaluated on the Interactive Emotional Dyadic Motion Cap-
ture database (IEMOCAP). It obtains an unweighted accuracy of 71% and an F1 score
of 69.2%, showing the effectiveness of our approach.

The remainder of this paper is organized as follows. In Section 2, we describe the
modulation-filtered cochleagram feature. In Section 3, we describe the proposed emotional
recognition framework with a multi-level attention module. The experiments and results
are presented in Section 4. Finally, the paper is concluded in Section 5.

2. Modulation-Filtered Cochleagram

In this section, we introduce modulation-filtered cochleagram features from spectral–
temporal modulation representation.

2.1. Modulation-Filtered Cochleagram Features

The modulation-filtered cochleagram feature is used to capture the temporal modula-
tion cues from emotional speech and achieves significant effects in dimensional emotion
prediction. In this study, we explore the potential of employing the modulation-filtered
cochleagram features for categorical emotion recognition. The emotional speech signal s(t)
is first filtered using a bank of Gammatone cochlea filters. Then, the temporal envelope
of the subchannel signal is extracted using Hilbert transform. Furthermore, the m th mod-
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ulation filter in the nth channel envelope signal is used to obtain the spectral–temporal
modulation signal smu(n, m, i), which is defined as:

smu(n, m, i) = w(tw) · sm(n, m, (i− 1) · Lens + tw) (1)

where w(tw) is the window function, tw is the time window size, and Lens is the frame shift.
smu(n, m, i) refers to the m th modulation channel and the n th cochlea acoustic channel
of the i th modulation unit, and a total of n ∗ m channel signals are generated, where
1 ≤ i ≤ L, L is equal to Lent/Lens, and Lent is the total length of the speech signal s(t).
sm(n, m, (i− 1) · Lens + tw) is the spectral–temporal modulation signal of the n subchannel
and the m subchannel of the i modulation unit. smu(n, m, i) represents the m modulation
subchannel in the n acoustic subchannel. The calculation formula is as follows:

sm(n, m, t) = mf(m, t) ∗ se(n, t), 1 ≤ m ≤ M (2)

where mf(m, t) is the pulse response of the modulation filterbank, M is the number of
channels in the modulation filterbank, and se(n, t) is calculated by sg(n, t) as the size of the
complex resolution signal ŝg(n, t) = sg(n, t) + jH {sg(n, t)}. H {·} represents the Hilbert
transformation. Therefore, se(n, t) is calculated as follows:

se(n, t) =
∣∣ŝg(n, t)

∣∣ = √sg(n, t)2 +H
{

sg(n, t)
}2 (3)

The sg(n, t) represents the speech signal s(t) of the nth channel of the speech signal
processed by the auditory filter, using the following formula:

sg(n, t) = gt(n, t) ∗ s(t), 1 ≤ n ≤ N (4)

where gt(n, t) represents the pulse response of the nth channel of the filterbank, ∗ represents
the convolution operation, t is the number of samples in the time domain, and N is the
number of channels in the auditory filterbank. The Gammatone filterbank is used to
simulate the motion of the cochlear basilar membrane, and its pulse response is the product
of the Gamma distribution and the cosine signal:

gt(n, t) = Atnf−1exp
(
−2πw f ERBN( fn)t

)
cos(2π fn t +ϕ

)
(5)

where A, n f and w f are the amplitude, order, and bandwidth of the filter,

Atnf−1 exp
(
−2πw f ERBN( fn)t

)
is the amplitude term of the Gamma distribution repre-

sentation, fn is the central frequency of the nth channel of the filter, and ERBN( fn) is the
equivalent rectangular bandwidth of fn, which is a psychoacoustic measure of the width
of the auditory filter at each point along the cochlea. The calculation formula is provided
as follows:

ERBn( fn) =
fn

Qear
+ Bmin (6)

where fn is the central frequency of the n th filter, fn
Qear

is the quality factor, which approxi-
mates the filtering quality of the high-frequency band, and Bmin is the minimum bandwidth,
representing the approximation of the filtering quality of the low-frequency band. Qear
and Bmin generally adopt the values proposed in the literature [35], with 9.26449 and
24.7, respectively.

MCG(c, i) results from the convolution operation of each modulation unit:

MCG(c, i) =
L−1

∑
i=0

smu(c, i) ∗ smu(c, i). (7)
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2.2. MCG Feature Representation of Different Emotions

The MCG feature exhibits varying weights of emotions across different channels,
with a particular focus on low-modulation frequency channels around 4 Hz. Within these
channels, neutral emotion and sadness tend to express themselves at lower modulation
frequencies, while anger and happiness display contrasting patterns [11]. Figure 1 shows
examples of the MCG feature of the first modulation channel in different emotional speech
from the IEMOCAP dataset [36]. The x-axis represents the speech sequence, and the y-axis
represents the number of acoustic channels n (n = 16). Figure 1a–d show the modulation-
filtered cochleagram of sadness, anger, neutral emotion, and happiness, respectively. By
observing these panels, we can discern that different emotions manifest in distinct acoustic
channels, suggesting potential discrimination based on MCG features. In the cochleagram,
the energy associated with sadness primarily concentrates in the slower acoustic channel,
while the energy related to anger and happiness primarily concentrates in the higher
acoustic channel. However, in comparison to happiness, the energy distribution of anger
is relatively concentrated in higher acoustic channels. This shows that different emotions
characterized by the acoustic channels are significantly different in the MCG features. We
can capture the distinctive characteristics of different emotions from the MCG features.
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3. Emotional Recognition Model

In this section, we introduce a multi-level attention-based emotion recognition model
using the modulation-filtered cochleagrams.

3.1. Overview of the Emotion Recognition Model

The proposed emotion recognition model is shown in Figure 2. Firstly, MCG fea-
tures are extracted through auditory signal processing of the speech signal and fed into
the 3D convolution to obtain the high-level feature representation F3D, with a shape of
W × H × T × C, in which W, H, T, and C represent the acoustic representation, modulation
representation, temporal, and channel, respectively. Subsequently, the multi-level atten-
tion module (MAM) is used to capture significant emotional segment information. The
MAM extracts emotional information from three dimensions, namely channel (C), space
(W × H), and time (T), accurately locating areas with significant emotions. The channel-
level attention module is used to capture the dependence of the channel structure from
the 3D convolution feature map, the spatial-level attention module is used to capture the
dependence of the spectral–temporal spatial structure of the feature representation, and
the temporal-level attention module is used to capture the significant emotional regions



Appl. Sci. 2023, 13, 6749 6 of 16

from the concatenated feature sequence of the channel and spatial attention map. Among
them, the channel-level attention and spatial-level attention are responsible for captur-
ing the dependencies between the channel and spatial dimension of the feature map in
a parallel mode, respectively. Finally, attention-based feature representations obtained
from the temporal-level attention module are fed into a softmax layer, which generates the
distribution of the emotional state based on the input speech features.
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3.2. Channel-Level Attention

The channel-level attention module is used to calculate the channel-wise attention
map from the 3D convolution feature map. This attention map helps to recalibrate the
weights of each channel, allowing the model to focus on informative parts of the input.
The design of the channel-level attention module is similar to that of the CBAM, with a
slight difference. In this module, two additional 3D convolutional layers are inserted to
capture spatial and temporal information from the feature maps specific to each channel.
To compute the channel-level attention efficiently, the spatial and temporal dimensions of
the input feature map are squeezed. This operation reduces the feature map’s spatial and
temporal dimensions while preserving the channel information. The resulting squeezed
feature map is then passed through two separate 3D convolutional layers to extract spatial
and temporal information for each channel. The outputs of these convolutional layers are
used to compute the channel-level attention map. Figure 3 illustrates the structure of the
channel-level attention module. The channel-level attention map is first obtained through
adaptive learning, and then element-level multiplication with the input feature map F3D is
used to obtain a refined feature map F′3D. The calculation formula is provided as follows:

F′3D = C3D(F3D)
⊗

F3D, (8)

where C3D represents the channel-level attention map, with
⊗

representing the element-
level multiplication.
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We first aggregate spatial information of a feature map F3D by using both average-
pooling and max-pooling operations, generating two different spatial context descriptors:
Avgpool(F3D) and Maxpool(F3D), which denote adaptive average-pooling features and
max-pooling features, respectively.
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Both descriptors are then fed into two 3D convolutional layers with a rectified linear
unit (ReLU) function. Subsequently, the features are fused using element-wise summation,
and the sigmoid activation function is applied to obtain the channel attention map C3D ∈
R1×1×1×C. The channel-level attention map indicates how important each channel is for
the emotion recognition results. The calculation formula is as follows:

C3D(F3D) = σ(Conv2(Relu(Conv1(Maxpool(F3D)))) + Conv2(Relu(Conv1(Avgpool(F3D))))), (9)

where Conv1 and Conv2 represent the first and second 3D convolution operations, respec-
tively, and σ denotes a sigmoid operation. Both convolutions are 1 × 1 × 1 convolution
kernels, the number of output channels is C

r and C, and r is the dimensionality reduction
coefficient in the channel-level attention, with a value of 16. The batch normalization after
the channel feature map C3D is used to obtain the same network input distribution and
improve the effectiveness of different channels on the feature maps.

3.3. Spatial-Level Attention

The spatial-level attention module is used to calculate the spatial-wise attention map
from the 3D convolution feature map. Unlike the channel-level attention module, which
focuses on informative channels, the spatial attention module focuses on identifying in-
formative spatial regions in the feature maps. The spatial attention is complementary to
the channel-level attention and helps the model determine where the informative parts are
located. Figure 4 illustrates the structure of the spatial-level attention module. The spatial-
level attention map generated through the spatial-level attention is used for element-level
multiplication with the F3D to obtain a refined feature map F′′3D. The calculation formula is
provided as follows:

F′′3D = S3D(F3D)
⊗

F3D, (10)

where S3D represents a spatial-level attention map, with
⊗

representing element-level
multiplication. The feature map F3D integrates the feature map through maximum pooling
and average pooling, respectively, to obtain global information. Further, 3D convolution
with a kernel size 3 × 3 × 1 is used to obtain spatial regions of emotionally significant
spectral–temporal space, thus obtaining a spatial-level attention map S3D ∈ RW×H×1×1.
The spatial-level attention map represents the importance of each region in the feature map
F3D. The calculation formula is provided as follows:

S3D(F3D) = σ
(

f 3×3×1([Maxpool(F3D), Avgpool(F3D)]), (11)

where f 3×3×1 is a convolution kernel of size 3 × 3 × 1.
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 Figure 4. The spatial-level attention module.

3.4. Temporal-Level Attention

The temporal-level attention module is designed to focus on the significant emotional
regions by considering the concatenation of the refined feature maps obtained from the
channel attention map F′3D and the spatial attention map F′′3D. Figure 5 illustrates the
structure of the temporal-level attention module. In this module, a bidirectional LSTM
(BLSTM) network is utilized. The speech frame sequence is fed into the BLSTM network in
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both the forward and backward directions. This allows the network to capture temporal
dependencies and extract contextual information from both past and future frames. The
output of the BLSTM network is a sequence of hidden states hi. The last states of the
forward and backward LSTM cells are concatenated to produce the final sequence of
hidden states. This concatenation enables the model to capture long-range dependencies
and capture the contextual information from the entire sequence. Subsequently, the ReLU
activation function is used to produce non-linear transformationsR(hk).

R(hi) = UiReLU(Wihi + bi), (12)

where Wi and Ui are the trainable parameter matrices, and bi is the bias vector. We use the
non-linear function of the ReLU due to its good convergence performance. For each hi, the
αi can be computed as follows:

αi =
exp(R(hi))

∑L
i=1 exp(R(hi))

. (13)

We then obtain the attention weights αi of each sequence from the attention model.
The output of the attention layer, att_sum, is the weighted sum of h.

att_sum =
L

∑
i=1

αihi (14)
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which incorporates deltas and delta-deltas of nine modulation filters. To obtain a high-
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Figure 6 illustrates a flowchart of the multi-level attention module for categorical
emotion recognition using MCG features. The MCG features are extracted from the speech
signal with a shape of 32× 27× 200× 1. These features include modulation representation,
which incorporates deltas and delta-deltas of nine modulation filters. To obtain a high-
level feature representation, a 3D CNN is used with a shape of 8 × 7 × 50 × 64. The
representation is then squeezed to a three-dimensional shape. Next, channel-level attention
and spatial-level attention are used to generate emotional saliency maps for both the
channel and spatial feature representations. Additionally, temporal-level attention is used
to capture significant emotional regions from the concatenated feature sequence of the
emotional saliency maps. Finally, the obtained feature representations are fed into a fully
connected layer, followed by a softmax function, to derive the emotion state.
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4. Experimental Results and Analysis

In this section, we introduce the categorical emotion dataset and experimental result
analysis in this study.

4.1. Dataset Description and Evaluation Metrics

In this study, the IEMOCAP database is used in the experiment for categorical emotion
recognition. Only four emotional categories are used in this database: happy, sad, angry,
and neutral. Since the speech from scripted data may contain an undesired relationship
between linguistic information and the emotion labels, we only use the improvised data.
We calculate MCG features from the speech signal within the IEMOCAP database and split
those MCG features into 2 s segments. Each segment split from one sentence retains the
same emotion label of the original sentence. The 2 s segments are performed during the
training stage, while the entire sentences are used for evaluation during the testing stage.

Figure 7 illustrates the data distribution, revealing the following counts for each
category: neutral (1099), happy (947), angry (289), and sad (608). Because the class distri-
bution of the IEMOCAP database is not balanced, the number of utterances belonging to
happy/neutral is more than 3-times that of angry. In this paper, unweighted accuracy (UA)
is used as the performance metric of the proposed model to avoid bias towards the larger
class. The calculation formula of UA is as follows:

acci =
TPi

TPi + FPi
× 100%, (15)

UA =
1
E

E

∑
i=1

acci × 100%, (16)

where TPi and FPi represent the true and false positive of each category, acci represents
the accuracy of each category, and E represents the number of emotional categories.

Additionally, the F1 score is also calculated to evaluate the performance of the model,
as it takes into account the harmonic mean of precision and recall, providing a comprehen-
sive measure of accuracy. The calculation formula of F1 score is as follows:

F1 =
1
E

E

∑
i=1

2TPi
2TPi + FPi + FNi

× 100%, (17)

where FNi represents the false negative of each category.
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4.2. Experimental Setup

The deep learning model is trained using leave-one-session-out cross-validation with
a batch size of 50. The TensorFlow deep learning framework is utilized to implement our
methods. In all experiments, the models are trained with the Adam optimizer, employing
a learning rate of 1 × 10−4 to minimize the likelihood of a cross-entropy objective. Addi-
tionally, we incorporate the ReLU activation function to introduce non-linearity into the
networks. To mitigate overfitting during network training, a dropout rate of 0.5 is applied
after the recurrent layer.

4.3. Experimental Results Analysis

To compare the performance of speech emotion recognition using MCG features and
multi-level attention, two types of experimental comparisons are conducted. Firstly, we
evaluate the emotional recognition performance of traditional acoustic features (MFCC,
emobase2010, IS09 [37]), spectrograms, MSF, and MCG under the same deep model. Acous-
tic features are obtained by calculating the HSF using the openSMILE toolkit [38]. The
spectrogram is generated by dividing the speech signal into frames and applying window-
ing, zero padding, and Fast Fourier Transform (FFT) to each frame. A cochleagram, which
simulates the frequency selective characteristics of the human cochlea, is generated using a
gammatone filterbank with 64 channels, ranging from 50 to 8000 Hz. MSF is obtained by
calculating statistical features, such as spectral centroid, flatness, skewness, and kurtosis,
from temporal modulation representation. All features are first normalized via specific
z-normalization. For each feature set, we train convolutional recurrent neural networks
(CRNNs) to recognize the speech emotion. The CRNN model consists of two convolutional
blocks, one bidirectional LSTM block, and a fully connected layer. Each convolutional block
consists of a convolutional layer with a convolutional kernel of 3*3, followed by a batch
normalization (BN) layer, ReLU activation function layer, and a max-pooling layer.

Table 1 shows the performance comparison of the seven features on the IEMOCAP
database. MFCC features yielded the lowest results at 58.5%, potentially due to their
small number of 39-dimensional features compared to IS09, emobase2010, and MSF. The
spectrogram achieved a slightly higher accuracy compared to MFCC. This representation
captures the spectral content of the speech signal and provides better performance than
MFCC. The cochleagram achieved a slightly higher accuracy than the spectrogram. This
representation takes into account the frequency selectivity of the human auditory system,
which contributes to its improved performance compared to the spectrogram. Among all
the tested features, MCG achieved the highest accuracy of 63.8%. This outcome indicates
that MCG features effectively capture emotional information within the same model.
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Table 1. Performance comparison between different features on the IEMOCAP database (%).

FEATURE UA

MFCC 58.5
emobase2010 60.9

IS09 59.4
MSF 59.7

Spectrogram 61.6
Cochleagram 62.1

MCG 63.8

Furthermore, in order to demonstrate the effectiveness of utilizing multi-level attention
for extracting advanced emotional features from MCG, we conducted a comparative
analysis between the proposed method and various baseline approaches. We compare our
approach with several baselines.

(1) Three-dimensional CRNN max-pooling—similar to the CRNN model in hierarchical
structure, but each convolutional block uses 3D convolution operations instead of
2D operations to extract high-level feature representations from MCG features. The
max-pooling operation is used on the output of the LSTM network and then is fed
into the fully connected layer for classifying.

(2) Three-dimensional CRNN attention—different from our proposed 3D CRNN max-
pooling, the max-pooling operation is replaced with a temporal attention layer.

(3) Triple attention—the channel and spatial and temporal attention modules obtain their
respective weights of the feature map in parallel, and then the concatenated attention
maps are fed into the LSTM network.

Table 2 presents a performance comparison between different architectures on the
IEMOCAP database, measured in terms of UA and F1 score.

Table 2. Performance comparison between different architectures on the IEMOCAP database (%).

METHOD UA F1 Score

3D CRNN-max-pooling 67.5 64.2
3D CRNN-attention 67.8 65.4

Triple-attention 69.4 68.1
Proposed method 71.0 69.2

The results indicate that the recognition accuracy of the 3D CNN based on max-
pooling is 3.7% higher compared to the 2D CNN when using MCG features. Additionally,
when incorporating the attention mechanism, the recognition accuracy of the 3D CNN
increases by 4.0% compared to the 2D CNN. These findings suggest that the utilization
of the 3D CNN architecture, along with max-pooling and attention mechanisms, leads
to improved performance in recognizing emotions from spectral–temporal modulation
representations of MCG. Moreover, the utilization of the attention method outperforms
the deep model with the max-pooling operation, indicating that attention can capture
discriminative emotional information from high-dimensional spatial information.

Furthermore, the results also show that the multi-level attention network outperforms
other models, achieving the highest UA of 71.0% and F1 score of 69.2%. In comparison
to the 3D CRNN attention model, the proposed multi-level attention network exhibits
a considerable absolute improvement of +3.2% and +3.8% in UA and F1-score metrics,
respectively. Similarly, when compared to the triple attention model, the multi-level
attention network shows an absolute improvement of +1.6% and +1.1% in UA and F1-score
metrics, respectively. These results suggest that the proposed method with the multi-
level attention network is capable of extracting more informative features from speech
data compared to the 3D CRNN attention and triple attention models. This indicates
the superiority of the multi-level attention network in recognizing emotions, which can
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use a channel and spatial attention to obtain complementary attention maps and use
temporal attention to obtain significant emotional regions. It can capture salient emotional
information from the multi-dimensional space of the MCG feature and greatly reduce the
parameters of conventional neural networks, which is important for high-dimensional
representation space.

Overall, these findings support the efficacy of the proposed multi-level attention
network in emotion recognition tasks, showcasing its potential for improving the accuracy
and interpretability of emotion recognition systems.

In summary, Table 2 provides strong evidence for the improved performance of the
proposed architecture in emotion recognition, outperforming other models in terms of both
UA and F1 score. These statistical findings emphasize the effectiveness of the multi-level
attention network, along with the advantages of incorporating 3D CNN, max-pooling, and
attention mechanisms in recognizing emotions from MCG features.

Figure 8 presents a confusion matrix obtained from the experiments. The experimental
results reveal that the proposed method obtains the highest recognition rate for sad and the
lowest recognition rate for neutral emotion. There is a tendency for confusion between sad
and neutral emotions, with instances of misclassification in both directions. Additionally,
anger is more easily confused with happy than happy is confused with anger. In general,
the ability of the multi-level attention model based on MCG features to recognize emotions
is the same as that of the human auditory system.
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To show the benefit of the proposed model, we compare our results with the studies
presented in Table 3. In [34], the authors proposed an end-to-end speech emotion recog-
nition system using multi-level acoustic information, including MFCC, spectrogram, and
wav2vec2, along with a newly designed co-attention module. In [39], the authors used
log-Mel filterbank features as the input to an autoencoder and used an attentive CNN for
representation learning. In [40], the authors used a 3D attention-based CRNN for learning
discriminative features for SER, utilizing a Mel spectrogram with deltas and delta-deltas as
inputs. In [41], the authors proposed a parallel network based on a connection attention
mechanism (AMSNet) for multi-scale SER. In comparison to these studies, our approach
achieves a comparable result of 71% accuracy on the IEMOCAP, employing a multi-level
attention module with MCG features. This finding indicates that the MCG features pro-
vide effective spectral–temporal representations, and the multi-level attention module
successfully extracts emotional information for accurate emotion recognition.
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Table 3. The results of various approaches on the IEMOCAP database (%).

Literature Features Models UA

Ramet et al. [39] LLDs ARNN 63.7
Mirsamadi et al. [22] MFCC and spectrum ARNN 58.8

Chen et al. [40] Spectrogram ACRNN 64.74 ± 5.44
Peng et al. [23] Modulation spectrum ASRNN 62.6
Zou et al. [34] * wav2vec2 Co-attention 68.65
Jiang et al. [32] Mel-spectrum CRNN-MA 60.6
Chen et al. [41] Spectrogram and LLDs AMSNet 70.51

Our work MCG MAM 71.0
* Only list the results using the wav2vec2 in this study.

4.4. Ablation Experiment

To evaluate the effectiveness of the multi-level attention-based emotion recognition
framework, this study carried out four ablation experiments, each focusing on different
attention modules. The following ablation experiments were performed:

MAM: This experiment employed the multi-level attention method, incorporating
channel-level, spatial-level, and temporal-level modules.

STM: This experiment utilized an attention method with spatial-level and temporal-
level modules.

CTM: This experiment utilized an attention method with channel-level and temporal-
level modules.

SCM: This experiment utilized an attention method with spatial-level and channel-
level modules.

By conducting these ablation experiments, the study aimed to evaluate the impact of
each attention module and determine the effectiveness of the multi-level attention-based
emotion recognition framework.

The results of the ablation experiments are shown in Figure 9. It can be observed that both
channel-level attention and spatial-level attention have similar effects on emotion recognition.
On the other hand, temporal-level attention demonstrates a greater influence on emotion
recognition compared to the former two attention models. However, channel-level attention
and spatial-level attention have the effect of complementary information to some extent,
thus strengthening the expression ability of auditory features and improving the model
performance. The comparative analysis through ablation experiments shows that the multi-
level attention model outperforms the individual attention modules in emotion recognition.
This model exhibits better performance and acquires a more comprehensive representation of
auditory emotion features. The bar chart trends in Figure 9 clearly show that the proposed
emotion recognition model with the multi-level attention strategy offers a better approach
in improving detection performance and enhancing accurate measurements, indicating the
effectiveness of all the structures of the multi-level attention networks.
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5. Conclusions

Speech emotion recognition plays a crucial in enabling natural human–computer
interaction. In this paper, we propose a multi-level attention-based framework that uti-
lizes modulation-filtered cochleagram (MCG) features for categorical emotion recognition.
Our approach takes into account channel, spatial, and temporal relationships in spectral–
temporal modulation representations of MCG features. Channel-level and spatial-level
attention modules are used to capture emotional saliency maps of channel and spatial
feature representations from the 3D convolution feature maps. Additionally, the temporal-
level attention module captures significant emotion regions. The experimental results
demonstrate that our approach significantly outperforms the baseline model in terms of
unweighted accuracy, highlighting the effectiveness of multi-level attention in SER. Fur-
thermore, our proposed framework addresses the variability in emotional characteristics
across time, which is an improvement on existing models. Auditory-inspired modulation-
filtered cochleagram features present notable advantages in enhancing speech perception
and comprehension. However, they suffer from two key limitations: high computational
complexity and inefficient feature extraction. To overcome these challenges, future re-
search endeavors should aim to investigate alternative approaches for rapid and efficient
feature-processing methods. Overall, our proposed multi-level attention-based framework
provides a promising approach for speech emotion recognition, and it opens avenues for
further advancements in this field.
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Abbreviations

ACNN Attentive convolutional neural network
ARNN Attention-based recurrent neural network
ASRNN Attention-based sliding recurrent neural network
BN Batch normalization
CBAM Convolutional block attention module
CNN Convolutional neural network
CRNN Convolutional and recurrent neural network
DFT Discrete Fourier transform
ERB Equivalent rectangular bandwidth
FFT Fast Fourier transform
HSF High-level statistics function
HRI Human–robot interaction
IEMOCAP Interactive Emotional Dyadic Motion Capture Database
IOE Internet of Everythings
LLD Low-level descriptors
LSTM Long short-term memory
BLSTM Bidirectional LSTM
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MAM multi-level attention module
MFCC Mel frequency cepstral coefficient
MCG Modulation-filtered cochleagram
MRCG Multi-resolution cochleagram
MSF Modulation spectral feature
ReLU Rectified linear unit
RNN Recurrent neural network
SER Speech emotion recognition
UA Unweighted accuracy
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