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Abstract. Today, a large number of sensors are spatially deployed to
monitor the environment in smart home. Through sensed data, home
automation systems can perceive the surroundings and further provide
corresponding services. However, such systems rely on highly available
data which cannot be guaranteed by sensors. If some sensors report
unavailable data to home automation systems without verification, the
systems might malfunction and even affect the safety of residents. In this
paper, a generalized highly available data interpolation (HADI) scheme is
proposed to serve as a guarantor for sensed data in smart home. HADI
takes advantage of the relationship between the faulty sensor and the
other heterogeneous sensors to reconstruct the highly available data.
Experiments reveal that our proposed scheme can achieve high data
availability with less computation cost.

Keywords: Smart home · Data restoration · Data availability · Data
interpolation · Home sensor

1 Introduction

Nowadays, numerous advanced Internet of Things (IoT) technologies and devices
have been implemented in the smart home environment. Due to the remarkable
sensing, communication, processing technologies and devices, the interconnec-
tion be-tween physical and virtual things is successfully achieved. In IoT-enabled
applications, sensor networks are the most important component. Critical infor-
mation from both external surroundings and inner systems is sampled by net-
worked sensors [1]. As a typical research field in IoT, the smart home makes
full use of sensor networks to sense the ambient physical information and even
detect human activities [2]. With the information collected from sensor net-
works, several home automation systems such as home energy management sys-
tems (HEMS) or heating, ventilation, and air conditioning (HVAC) systems have
been achieved. Therefore, sensors are playing a significant role in smart home.

However, according to [3], experiments revealed that sensors in smart home
environment are facing various problems which result in sensor faults or even
failures. Fault sensors will generate unavailable data, and these data will be
imported into home automation systems. Unavailable data may cause undesired
c© Springer Nature Switzerland AG 2021
M. Yang et al. (Eds.): NSS 2021, LNCS 13041, pp. 304–313, 2021.
https://doi.org/10.1007/978-3-030-92708-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-92708-0_19&domain=pdf
https://doi.org/10.1007/978-3-030-92708-0_19


A Scheme for Sensor Data Reconstruction in Smart Home 305

control, which not only cost additional energy consumption but also carry risk to
normal operation of actuators. For example, in the home energy control system
[4], faulty sensors transfer unavailable data to the controller, which may trigger
temporary invalidation. Furthermore, actuators that receive continual unavail-
able data probably result in system failure. Consequently, the efficiency of the
control system is challenged.

In this paper, a novel data interpolation scheme HADI is proposed to restore
accurate and available data to maintain the regular operation of home automa-
tion systems. Temperature, relative humidity, solar irradiance, and wind speed
are detected through the data obtained from our experiment platform. This
paper mainly focuses on restoring highly available solar irradiance data. The
novelty is mainly reflected in taking advantage of spatiotemporal heterogeneous
data. Hence processing time and training samples are reduced dramatically,
which differs from the general approaches.

Three main contributions are achieved by HADI. First, this paper summa-
rizes the format and pattern of unavailable data and illustrates the definition of
data availability in smart home. Then HADI algorithm is proposed, and analysis
in theory is given to explain the effectiveness of our algorithm. Moreover, sev-
eral experiments have been done to compare the performance of our HADI with
the state-of-the-art method. Experiments show that high availability of data is
guaranteed, meanwhile, the processing time and training samples are reduced
dramatically.

The rest of the paper is structured as follows. Section 2 shows the back-
ground and related works on data restoration. Section 3 illustrates the definition
and categories of data availability in smart home. Section 4 details the HADI
models and mathematical expressions. Section 5 demonstrates solar irradiance
data restoration using HADI, and shows the evaluation of the HADI scheme.
The paper is concluded in Sect. 6.

2 Related Work

Research related with data restoration have been carried out in the last 20 years.
Related works are mainly divided into three kinds of mechanisms: Principle
component analysis, Linear regression, Artificial Neural Network.

In [5], PCA first achieves data recovery for HVAC system, however, this
approach merely considers the temporal data of target data, which results in
a weak response by data variation. Given by the progress of Yu et al. [1], a
recursive principal component analysis (R-PCA) is proposed. R-PCA represents
a remarkable efficiency on data fault detection, data aggregation, and recovery
accuracy, whereas recursion increases the burden on processing units. Meanwhile,
R-PCA costs a longer processing time due to the high complexity.

Linear regression is a widely-used approach in data analysis. Efficient tempo-
ral and spatial data recovery (ETSDR) [6] integrate Auto Regressive Integrated
Moving Average (ARIMA) model with spatiotemporal data, furthermore, real-
ized the dynamic model identification and accurate intermittent data recovery.
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But the performance of dealing with continual unavailable data by using ETSDR
is a great challenge. Since the ETSDR update the linear model for every sin-
gle data for each sensor, the processing time and burden on the processor are
doubted as well.

In addition, Artificial Neural Network (ANN) [7] has been applied on tem-
perature recovery for HVAC systems in 1996. And neural network-based model
is optimized by Z. Liu et al. [8] by deep multimodal encoder (DME) framework,
which has excel-lent performance on high unavailability. However, either ANN
or DME requires the reliable data as training sample s, besides, the iterative
process of the neural network is time-consuming for dynamic systems. There-
fore, an approach is expected to reduce processing time and achieve accurate
data restoration will be presented in this paper.

3 Data Availability in Smart Home

3.1 Definition of Data Availability

In [9], availability is general purposed as the following equation:

lim
t→∞

= A =
MTTF

MTTF +MTTR
(1)

where t denotes the time of item, moreover, MTTF , MTTR is the mean
time to failure and to repair, respectively. Therefore, for sensor x, we have the
sensor availability Ax defined by faults in this scheme:

lim
t→T

Ax(t) = Ax =
IAD

(IUD +AD)
(2)

where T is the operation time. Similarly, IAD, IUD is the interval of available
and unavailable data, respectively.

3.2 Unavailable Data Description

Fig. 1. Process of unavailable data investigation.

In this paper, we investigated availability of the temperature, relative humidity,
solar irradiance and wind speed data. Note that, we don’t consider the data
loss and data delay in our model as shown in Fig. 1. In addition, we classify the
unavailable for-mat for single data as shown in Table 1 according to [10].
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Table 1. Unavailable format and description.

Format Description

Outlier Isolated data point or sensor unexpectedly distant from
models

“Stuck-at” Multiple data points with a much greater than expected
rate of change

Calibration Sensor reports values that are offset from the ground truth

Table 2. Pattern of unavailable data and description.

Duration Description

Intermittent Data act as unavailable in one or several seconds. Most
intermittent unavailable data are mainly caused by outlier
or spike

Continual Unavailable data last for a long period, a few minutes, even
hours. Most continual unavailable data are related with
“Stuck-at” and calibration

In Table 2, we define the pattern of unavailable data as intermittent and
continual. It will help us to recognize the unavailable data and figure out the
interpolation method.

Through the investigation, we define threshold [0,1360] (W/m2) as the range
of available solar irradiance values. Through availability investigation in the year
2016, we find unavailable data in the daytime last 574.2 h. It means that the
pyranometer is unavailable for nearly 1.6 h every single day. Meanwhile, most of
the unavailable data reveals a continual pattern. Hence, this paper will focus on
solar irradiance interpolation.

4 Models of HADI Scheme

4.1 HADI Structure

Fig. 2. Structure of HADI scheme.
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Figure 2 shows the structure of the HADI scheme, we suppose HADI is located
in the data process module. Raw data from each sensor unit is identified as
available or unavailable data in the availability detection stage. Available data
will continue the data process. However, Unavailable data are supposed to be
restored by Data Interpolation (DI) model with spatiotemporal heterogeneous
data. Therefore, due to the HADI scheme, high availability is guaranteed.

4.2 HADI Algorithm

Algorithm 1. Highly available data interpolation (HADI) scheme.
if Yi(n, t) > θy then // Yi(n, t) is unavailable.

Ŷi(n, t) ← Yi(n, t)
// Determine spatial and temporal horizon as:
HYi = Yi(n − h) : Yi(n − 1)
HX1:K = X1:K(n − h) : X1:K(n − 1)
if AHYi

< 50% then
// Available data are rare, reconsider horizon with restored data

HYi =
{
Y̌i

⋃
Ỹi

}
(n − h) :

{
Y̌i

⋃
Ỹi

}
(n − 1)

end if
// Aggregate the available data set in horizon HY(i)

Ŷi(C(1 : m)) =
[
Ŷi(C(1)), · · · , Ŷi(C(m))

]

for each u = 1 : K do
Xu(C(1 : m)) = [Xu(C(1)), · · · , Xu(C(m))]
// Substitute Xu(C(1 : m)) for Data Interpolation(DI) model

Ỹu(C(1 : m)) =
[
Ỹu(C(1)), · · · , Ỹu(C(m))

]

// Calculate the Root Mean Square Error

ϕ(u) =

√
(Ỹu(C(1))−Ŷu(C(1)))2+···+(Ỹu(C(m))−Ŷu(C(m)))

m

end for
ϕ(p) = min(ϕ(1 : K))
// Calculate current time Ỹi(n, t)
Y̌i(n, t) = f(Xp(n, t))

else
// Yt(n, t) is available.
Y̌t(n, t) ← Yt(n, t)

end if

As shown the Algorithm 1, we classify the raw data as available and unavailable
by threshold. Then, an appropriate horizon with temporal raw data is determined
for training. Meanwhile, we determine the same length horizon of correlated
spatial heterogeneous data. For preventing the horizon from suffering too much
unavailable data in raw data, the horizon of target data is reconsidered with a
set of available and restored data when unavailable data occupy more than 50%.
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As all horizons are completed, the positions of available data in the target data
horizon compose the set C(1 : m). Besides, to keep time synchronization, we
need to find the corresponding data X1:K(C(1 : m)) in a heterogeneous horizon.
DI model contains the correlations between X and Y , these correlations can
be described as Y = f(X), hypothetically. With spatial heterogeneous data as
inputs, K groups of simulated data are generated. Through calculating RMSE
between K groups simulated data and available data in target data horizon, we
can find sensors at locations p determine the minimum RMSE. Finally, with
current heterogeneous data input, interpolation of target data is accomplished
by inputting correlated heterogeneous data at location p into the DI model.

5 Di Model for Hourly Solar Irradiance

Fig. 3. DI model for solar irradiance interpolation.

In this section, we will apply our HADI scheme to solve the low availability of
solar irradiance. As shown in Fig. 3, heterogeneous data inputs include the time
information, geographical information, temperature, and relative humidity data
from sensors distributed in 11 spots of the experiment platform.

5.1 Hourly Solar Irradiance

In this paper, we apply an improved hourly solar irradiance method for conver-
sion. According to [11], the equations are described as follows:

Solar irradiance R (W/m2) and global solar irradiance Rclear (W/m2) can
be expressed as:

R = τcRclear (3)

where τc denotes a radiative transmittance coefficient, which is supposed to
be an empirical function of relative sunshine duration:

τc = a+ bn/N + c(n/N)2 (4)
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where a, b, c are the model parameters. n/N represents relative sunshine
duration. Moreover, Rclear (W/m2) consists of surface beam irradiance Rb,clear

(W/m2) and solar diffuse irradiance Rd,clear (W/m2):

Rclear = Rb,clear +Rd,clear (5)

Rb,clear = R0τ b,clear (6)

Rd,clear = R0τd,clear (7)

where R0 (W/m2) is the solar irradiance on a horizontal surface at the
extraterrestrial level [11]. The broadband solar beam radiative transmittance
τ (b,clear) and radiative transmittance τ (d,clear)) are able to be described as:

τ b,clear ≈ max(0, τozτwτgτ rτa − 0.013) (8)

τd,clear ≈ 0.5[τozτgτw(1 − τaτ r) + 0.013] (9)

τg = exp(−0.0117(m′)0.3139) (10)

τ r = exp[−0.008735(m′)(0.547 + 0.014(m′) − 0.00038(m′)2

+4.6 × 10−6(m′)3)−4.08]
(11)

τw = min[1.0, 0.909 − 0.036ln(mv)] (12)

τoz = exp[−0.0365(ml)0.7136] (13)

τa = exp{−mβ[0.6777 + 0.1464(mβ)2]−1.3} (14)

m = 1/[sinh+ 0.15(57.296h+ 3.885)−1.253] (15)

m′ = mp/p0 (16)

p = p0 exp(−z/HT ) (17)

where τoz, τw, τg, τ r, τa are the radiative transmittance due to ozone absorp-
tion, water vapor absorption, permanent gas absorption, Rayleigh scattering, and
aerosol extinction, respectively. In addition, h (rad) denotes the solar elevation,
m refers to relative air mass, m′ is the pressure-corrected air mass, p0 (Pa) is the
standard atmospheric pressure, p (Pa) is the surface pressure. l is the thickness
of ozone and β in Eq. 14 is the Ångström turbidity coefficient. z is surface eleva-
tion from the mean sea level, HT is the scale height of an isothermal atmosphere,
and HT is 8430.
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5.2 Evaluation of HADI Scheme

In this section, we evaluate the efficiency of HADI. To evaluate the performance,
we use the RMSE and mean absolute error (MAE). RMSE reveals the accuracy
of simulation results, then, for data series with a length of N , RMSE can be
written as:

RMSE =

√√√√√
N∑

n=1
(d(n) − d̃(n))

2

N
(18)

Moreover, MAE is used to measure how close the simulated values are to the
original measured value:

MAE =
1
N

N∑

n=1

∣∣∣d(n) − d̃(n)
∣∣∣ (19)

In Eq. 18 and Eq. 19, d(n) denotes the original measured data, and d̃(n) is
the simulated data.

To show the performance of HADI better, we compare HADI with the
ETSDR scheme. Simulation results consist of intermittent and continual unavail-
able data restoration by HADI and ETSDR, respectively.

Fig. 4. Intermittent unavailable data
interpolation.

Fig. 5. Performance of intermittent
unavailable data interpolation.

Intermittent Unavailable Data Interpolation. Figure 4 shows an example
of intermittent unavailable data interpolation. In 100min’ dataset, we interpolate
10 minutes’ unavailable data at a random time. Although ETSDR performs a
higher accuracy, however, high availability is guaranteed with HADI as well as
ETSDR.

In addition, we increase the percentage of unavailable data from 10% to 30%
as shown in Fig. 5, and results reveal that ETSDR shows extremely high accuracy
with-out the influence of unavailable data increase.
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Fig. 6. Continual unavailable data
interpolation.

Fig. 7. Performance of continual
unavailable data interpolation.

Continual Unavailable Data Interpolation. On the other hand, we consider
the circumstance of continual unavailable. Figure 6 shows continual unavailable
interpolation of same length unavailable data in Fig. 4. Results reveal that HADI
performs better than ETSDR on dealing with continual unavailable data. With-
out real-time data to update the ARIMA model in ETSDR, the interpolation
data regress to straight line rapidly, and consequent enormous error gradually.

However, as shown in Fig. 7, HADI shows a steady performance on accuracy
whose RMSE and MAE vary at a low value despite the percentage of unavailable
data growth.

Fig. 8. Performance of processing time.

Processing Time Comparison. Processing time is a significant feature for
real-time home automation systems as well, therefore we compare the processing
time between two schemes. In each processing data length, we keep the percent-
age of unavailable data as 10%, and Fig. 8 shows that on a logarithmic scale, it
is obvious that ETSDR costs much more processing time than HADI. Hence, we
can conclude that HADI achieves a dramatic efficiency on continual unavailable
data problems.
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6 Conclusion and Future Work

In this paper, we purposed a new data interpolation scheme based on spatiotem-
poral heterogeneous data to solve continual unavailable issues. HADI is able to
maintain relatively high accuracy and absolutely available. Furthermore, HADI
shows amazing efficiency in processing time. HADI is a generalized scheme that
can be widely used not only in smart home but also in other crowded sensor
networks. Our future work will focus on attempting to introduce more models
and correlations into HADI so that home automation systems will be isolated
from unavailable data.
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