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1.0 Introduction

1. Introduction
• Smart home is one of the most popular

Internet of Things (IoT) application
today

• Sensor data takes a significant role in the
performance of automated systems in
smart home environment

A

HVAC : Heating, ventilation, and air conditioning
HEMS : Home energy management system
CPHS： Cyber-physical home system
HCS : Healthcare system
LCS : Lighting control system

H : Humidity sensor
A : Air flow sensor
T : Temperature sensor
R : Solar irradiance sensor
M : (electricity) Meter
B : Biosensor
C : Camera
I : Illuminance sensor
S: Switch

Fig. 2 Smart Home Automated Systems
curtain

sensor

TV

Sensors are distributedly placed throughout
the smart home environment
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• Advanced experimental 
environment for future 
smart home
• Over 300 sensors and 

actuators deployed
• ECHONET Lite v1.1 

protocol implemented
• Various smart home

automated systems, e.g.,
Cyber-Physical Home
System (CPHS)

1.1 Smart Home Environment and CPHS

Fig. 3 iHouse in Nomi City
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Date Time Temperature Relative
Humidity

2016/01/01 01:06:19 2.72 112.49
⋮ ⋮ ⋮ ⋮

2016/01/01 06:17:34 1.82 100.5
2016/01/01 06:17:39 1.82 99.90

⋮ ⋮ ⋮ ⋮
2016/01/05 15:46:19 6.99 99.96

2016/01/05 15:46:24 6.98 -9999
⋮ ⋮ ⋮ ⋮

2016/01/06 09:00:49 6.56 -9999
2016/01/06 09:00:54 6.56 99.73

⋮ ⋮ ⋮ ⋮

1.2 Research Problem

Table 1 Example of Observed Data

Research Problem
Automated systems meet a potential hazard caused by unavailable data problem, 

especially for a unique sensor. To prevent automated system suffering from
unavailable data, a data restoration scheme is considered in this research.
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Sensors’ raw data

Unavailable data
exist

Automated Systems
Failure

Consequences
• increase energy consumption
• decrease indoor thermal comfort
• and so on

Fig. 5 Consequences of Unavailable Data



2.0 Background

Unavailable
Data Type Definition

Outlier Isolated data point or sensor unexpectedly distant from models

Stuck-at Multiple data points with a much greater than expected rate of change

Calibration Sensor reports values that are offset from the ground truth

Spike Multiple data points with a much greater than expected rate of change

Sensor Type Outlier Stuck-at Calibration Spike

Temperature

Humidity

Solar irradiance*

Wind speed

Table 2 Unavailable Data Type

✗
✗

Table 3 Unavailable Data Type on Sensors

In [3], data fault has been defined as

Duration Type Definition

Intermittent Data show an unavailable less than k samples. Most intermittent
unavailable data are caused by outlier

Continual
Data show an unavailable more than and equal to k samples. Most
continual unavailable data are related with Spike, Stuck-at and
calibration

✗

[2] M. Rausand and H. Arnljot, System reliability theory: models, statistical methods, and applications. John Wiley & Sons, vol. 396, 2004.
[3] K. Ni, N. Ramanathan, M. N. H. Chehade, L. Balzano, S. Nair, S. Zahedi, E. Kohler, G. Pottie, M. Hansen, and M. Srivastava, “Sensor network data fault types,”

ACM Transactions on Sensor Networks (TOSN), vol. 5, no. 3, 2009.

Table 4 Duration Type

○ ○
○ ✗ ✗

○
Unavailable data exists, but is acceptable ○ ✗

○
✗

○

lim
!→#

𝐴 𝑡 = 𝐴 =
𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹 +𝑀𝑇𝑇𝑅

In general, availability 
defined by failure[2]

MTTF : Mean Time to Failure
MTTR : Mean Time to Repair

In this research, data
availability of a sensor 𝑥 is:

IAD: Interval of available data 
IUD: Interval of unavailable data 

lim
!→$

𝐴% 𝑡 = 𝐴% =
𝐼𝐴𝐷

(𝐼𝐴𝐷 + 𝐼𝑈𝐷)
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Unavailable data existsUnavailable data doesn’t exist



Fig. 5 Example of Unavailable Data Type

2.1 Example and Observed of Unavailable Data
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Sensors
Data Lost
Detection

Data availability
Detection

Automated
SystemSensing & Communication

Problem
Data Lost
Problem

Humidity
sensor

2nd floor
100%

Delay:0.83% 98.16% 98.16%

Bedroom
100%

Delay:1.45% 98.74% 98.74%

Entrance
100%

Delay:0.82% 99.07% 99.07%

Japanese room
100%

Delay:0.85% 98.83% 98.83%

Kitchen
100%

Delay:0.85% 98.75% 98.75%

Living room
100%

Delay:1.45% 98.15% 98.15%

Spare room
100%

Delay:0.81% 98.52% 98.52%

Utility room
100%

Delay:0.84% 98.83% 98.83%

Western room 1
100%

Delay:1.59% 98.77% 98.77%

Western room 2
100%

Delay:0.96% 98.82% 98.82%

Outdoor
100%

Delay:0% 100% 64.29%

① ② ③
Temperature

sensor

2nd floor
100%

Delay:6.75% 98.82% 98.82%

Bedroom
100%

Delay:6.67% 98.77% 98.77%

Entrance
100%

Delay:6.74% 98.59% 98.59%

Japanese room
100%

Delay:6.72% 98.76% 98.76%

Kitchen
100%

Delay:6.72% 98.76% 98.76%

Living room
100%

Delay:6.72% 98.83% 98.83%

Spare room
100%

Delay:6.73% 98.83% 98.83%

Utility room
100%

Delay:6.72% 98.83% 98.83%

Western room 1
100%

Delay:6.67% 98.78% 98.78%

Western room 2
100%

Delay:6.61% 98.82% 98.82%

Outdoor
100%

Delay:6.68% 100% 100%

① ② ③
Solar

irradiance

outdoor
100%

Delay:0 100% 93.4*

① ② ③

2.2 Investigation of Unavailable Data at iHouse
① ② ③

Wind
speed

outdoor
100%

Delay:0 100% 99.96%

① ② ③

Table 5 Availability of Humidity Sensor Table 6 Availability of Temperature Sensor

Table 7 Availability of Pyranometer

Table 8 Availability of Anemometer

In the unavailable data, a continual
duration is major type

Unavailable data of solar irradiance are
defined as:
• Minus value in daytime

In 2016 whole year, data availability of solar 
radiation are calculated, and we found:
• Unavailable data in daytime last 574.2 

hours
• Pyranometer is unavailable nearly 1.6 

hours (during daytime) every single day

Methods are required to restore those unavailable data (solar irradiance/relative humidity)
with homogeneous and/or heterogeneous data

Data Availability
Problem
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Data 
Restoration

1996 2005 2014
Year

2017Objective : ‘high availability’ and ‘comparatively accurate’ data restoration scheme
with rapid computation to maintain a regular operation of any automated system
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2.3 Related Works, Motivation and Objective

§ Require highly available data as training sample
§ Too much time consumption on data process

Current research on continual unavailable problem 

Current research on intermittent unavailable problem 
§ Emphasize accuracy too much, ignore requirement of data in real-world condition
§ The higher accuracy, the longer processing time

Motivation

Artificial Neural Network (ANN)

• Use enormous completely 
available temporal data to
estimate future data

• Aiming to achieve a highly 
accurate restoration for HVAC 
system

Intermittent Unavailable Problem 

Continual Unavailable Problem

Principle components analysis (PCA)

• Use spatiotemporal homogeneous data
• Taking the lead of applying PCA on data

restoration in HVAC system

Recursive-PCA

• Remarkable efficiency on data fault detection,
data aggregation and recovery accuracy

• Consider the spatiotemporal homogeneous and 
heterogeneous data

Efficient Temporal and Spatial Data 
Recovery (ETSDR)

• Use spatiotemporal homogeneous data
• Apply the linear regression mechanism 

ARIMA
• Achieve extremely high accuracy 

intermittent data restoration

Deep Multimodal Encoder (DME)

• An optimized ANN network
• DME specialize the hidden layer 

for adapting to heterogeneous 
data computing 



3.0 Proposed HADI Scheme
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Highly Available Data Interpolation (HADI) Scheme and its Architecture

Data transferring

DI
Model

Data
Restoration

Data Preparation



start end

Determine spatial and temporal horizons with
𝐻$% = 𝑌% 𝑛 − ℎ : 𝑌%(𝑛 − 1)
𝐻$& = 𝑌& 𝑛 − ℎ : 𝑌&(𝑛 − 1)

𝐻!":$ = 𝑋":$ 𝑛 − ℎ : 𝑋":$ 𝑛 − 1

𝐴'%>50%

Reconsider Horizons with highly available data
𝐻$% = { 1𝑌% ∪ 3𝑌%} 𝑛 − ℎ : { 1𝑌% ∪ 3𝑌%}(𝑛 − 1)
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Fig. 7 Flow Chart and its HADI Modules

Data Availability
Identification

Data Preparation

Data
Restoration

10 / 22

3.2
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3.2 DI Model Data Restoration
3.2.1 With Heterogeneous Data Interpolation

DI Model Data Restoration

𝑋# 𝑛, 𝑡

𝑌 = 𝑓(𝑋)



𝑌%(")
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𝑌,(𝐶 1 ) ⋯ 𝑌,(𝐶(𝑚)

𝑌%(") /𝑌"/(𝐶(1)) ⋯ /𝑌"/(𝐶(𝑚))
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𝑌((#*() /𝑌$/(𝐶(1)) ⋯ /𝑌$/(𝐶(𝑚))
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𝑌$ /𝑌$(𝐶(1)) ⋯ /𝑌$(𝐶(𝑚))

𝑌. 𝑌%(𝐶(1)) ⋯ 𝑌%(𝐶(𝑚))

DI Model with
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Data Interpolation

DI Model with
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Data Interpolation
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3.2.2 With Heterogeneous and/or Homogeneous Data Interpolation

DI Model Data Restoration

3.2 DI Model Data Restoration
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Fig. 8 Verification of Solar Irradiance
Parameter Description

Surface elevation 1219 m

Latitude 31.80°

Location USA EP (El Paso) 

Table 9 Parameter and Description for Verification DI
Model

𝑇

𝑅𝐻

𝐷&𝑇

𝐺

𝑇: Tempeature (Kelvin)

𝑅𝐻: Relative Humidity (%)

𝐷&𝑇: Date and Time

𝐺： Geographical Information

𝑅： Solar Irradiance

Solar irradiance
Data

Fig. 9 Input and Output of DI Model

Table 10 Parameter and Description for DI Model with Heterogeneous Data Interpolation

𝑌!"
𝑋=:>?

𝑋@&?

𝑋=:>BC

𝑋D

𝑹𝟐 = 𝟎. 𝟗𝟔𝟕𝟏

Parameter Description
Surface elevation 132 m

Latitude 36.40°

Location JP Nomi

4.0 Simulation Verification
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Fig. 10 Example of Intermittent Unavailable Data Restoration Fig. 11 Performance of Intermittent Unavailable Data Restoration

l Despite of HADI results in bigger error, both HADI and ETSDR show the
feasibility of data restoration

l With the unavailable data length growing, accuracy of either HADI or ETSDR 
will decrease

l Average growth rate of RMSE and MAE of HADI are 12.89% and 29.14%, 
respectively. However, ETSDR holds higher accuracy, in which these values are
23.61% and 44.62%, respectively

4.1.1 Comparison of Intermittent Unavailable Data Restoration

14 / 22

4.1 Solar Irradiance Data Restoration
RMSE：Root Mean Square Error
MAE : Mean Absolute Error
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M
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RMSE of HADI
RMSE of ETSDR
MAE of HADI
MAE of ETSDR

10-2

10-1
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M
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(Number of simulations :10)

Number of samples k = 12



Simulation Result and Comparison

4.1.2 Comparison of Continual Unavailable Data Restoration

Fig. 13 Performance of Continual Unavailable Data RestorationFig. 12 Example of Continual Unavailable Data Restoration

l ETSDR cannot update dynamic linear model with continual unavailable
problem. Thus, the restored data will regress in straight line gradually

l Apparently, HADI shows stable errors with original data, accuracy of HADI is
nearly same with intermittent unavailable data restoration

l On the contrary, it is astonishing that RMSE due to 30 min unavailable data
interpolation increased by 400% compared with condition of 10 min
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4.1 Solar Irradiance Data Restoration
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Verification of Equations

𝑇? = 1−
𝑇 × 𝑙𝑛(𝑅𝐻100)

𝐿/𝑅@

A'

RH(%) 100.0 90.0 80.0 70.0 60.0 50.0

Original data 15.00 13.38 11.58 9.58 7.29 4.64

Simulated result 15.00 13.38 11.58 9.58 7.27 4.62

T = 288.15 (15°C)

𝑅𝐻 = 100𝑒𝑥𝑝 −
𝐿

𝑅@𝑇𝑇?
(𝑇 − 𝑇?)

A'

𝒕𝒅 4.64 7.29 9.58 11.58 13.38 15.00

Original data 50.00 60.00 70.00 80.00 90.00 100.0

Simulated data 50.08 60.07 70.09 80.03 90.04 100.0

T = 288.15 (15°C)

4.2.1 Verification for Relative Humidity Equations

DI Model
𝑅𝐻

𝑅𝐻: Relative Humidity (%)

𝑇: Tempeature (Kelvin)

Fig. 14 Input and Output of DI Model

𝑌!"#

𝑋=:>?

𝑌=:>BC

𝑅𝐻

𝑅2 = 461.5J/(K*kg) (constant for
water vapor)
𝑇3= dew point temperature (Kelvin)
𝑡3 = dew point temperature (Celsius)
L (enthalpy of vaporization)
= (2500.8-2.36T+0.0016T2-0.00006T3)
J/g

𝑇

𝑇"

𝑓 𝑔 𝑋 = 𝑌

4.2 Relative Humidity Data Restoration
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l Relative humidity has a lower standard deviation. This means that values are
less spread out from their mean value

l It is noticeable that most of restored data by HADI and ETSDR are closely 
located at original data curve, most of them is even coincident

l Despite restored data by HADI reveal a certain error, however 89.1% restored
data are within 0.1 error value

4.2.2 Comparison of Intermittent Unavailable Data Restoration

Fig. 15 Example of Intermittent Unavailable Data Restoration Fig. 16 Performance of Intermittent Unavailable Data Restoration

17 / 22

4.2 Relative Humidity Data Restoration
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4.2.3 Comparison of Continual Unavailable Data Restoration

l HADI represents an excellent tracking character, although there are errors with
original data

l After a length of tiny variation which is hardly to recognize, the data restoration
by ETSDR regress in an obvious linearity

l HADI shows a stable variation on RMSE and MAE, the results of data 
restoration with 30 min reveals that the horizon is not so instructive as before 
when the raw data are sparse in target horizon

Fig. 18 Performance of Continual Unavailable Data RestorationFig. 17 Example of Continual Unavailable Data Restoration
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4.2 Relative Humidity Data Restoration
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*Probability of unavailable data = 10%
Fig. 19 Processing Time in Logarithmic Scale

l It is obvious that the processing time of HADI is more than 100 times shorter
than ETSDR

l Regardless of the processing data length grows, HADI keeps an extremely low
processing time

4.3 Processing Time Performance
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Concluding Remarks
1. This research focused on sensors with low data availability, especially a unique

sensor in the smart home environment
2. HADI succeeded in highly available data restoration and comparatively accurate
3. HADI shown a great performance on continual unavailable problem
4. HADI can enrich and enhance the correlation between heterogeneous sensors in

smart home environment
5. Unlike previous works, HADI performs high efficiency on processing time, in which it

can reduce the burden on the processor of smart automated system

Future Works
1. Focus on attempting to introduce more DI models and their correlations into HADI

scheme, so that the automated systems are free from unavailable data
2. In this research, unavailable data of sensor type are observed in iHouse. It is necessary

to figure out a detection method for identifying the unavailable data

5.0 Conclusion and Future Work
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Thanks for your attention!
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𝐻.!
/ =

+𝑌+ 𝑛−ℎ
0𝑌+ 𝑛−ℎ+1
3𝑌+ 𝑛−ℎ+2
+𝑌+ 𝑛−ℎ+3

⋮
+𝑌+ 𝑛−1

=

𝐻.!(𝟏)
𝐻.!(𝟐)
𝐻.!(3)
𝐻.!(𝟒)
⋮

𝐻.!(𝒉)
⋮

✕

𝐻.!(𝐶(1))
𝐻.!(𝐶(2))

𝐻.!(𝐶(3))
⋮

𝐻.!(𝐶(𝑚))

= 𝑯𝒀𝒊
𝑻(𝑪)

Available Target Data Aggregation

Find all available data(include restored data) in the horizon
Therefore, we compose a vector of available target data

And 𝕐 = 𝐻$2 𝐶 [Target Vector]

𝐻3#:%
/ =

𝐻3#
𝐻3&
𝐻3'
𝐻3(
⋮

𝐻3%

=
𝑋!(𝑛 −ℎ) ⋯ 𝑋!(𝑛 −1)

⋮ ⋱ ⋮
𝑋#(𝑛 −ℎ) ⋯ 𝑋#(𝑛 −1)

Heterogeneous Data Aggregation

Integrate the heterogeneous into matrix
Mark the simultaneous data corresponding to set 𝐶,

Compose a synchronous matrix

(𝐻3#:%(𝐶))
/=

𝐻3#(𝐶)
𝐻3&(𝐶)
𝐻3'(𝐶)
𝐻3((𝐶)
⋮

𝐻3%(𝐶)

=
𝑋!(𝐶(1)) ⋯ 𝑋!(𝐶(𝑚))

⋮ ⋱ ⋮
𝑋#(𝐶(1)) ⋯ 𝑋#(𝐶(𝑚))

Available Heterogeneous Data Aggregation

Then 𝕏 = (𝐻D4:6(𝐶))
E

DI Model Data Restoration #1

𝑌 = 𝑓(𝑋)

F𝕐 = (0𝑌!:#(𝐶))/ =

0𝑌!(𝐶)
0𝑌&(𝐶)
0𝑌7(𝐶)
0𝑌8(𝐶)
⋮

0𝑌#(𝐶)

=
0𝑌!(𝐶(1)) ⋯ 0𝑌!(𝐶(𝑚))

⋮ ⋱ ⋮
0𝑌#(𝐶(1)) ⋯ 0𝑌#(𝐶(𝑚))

Hence, we have K groups simulated data

Data Transformation

M𝕐 represents the matrix of restored data

Φ=

𝜑!
𝜑&
𝜑7
𝜑8
⋮
𝜑#

=

(0𝑌!(𝐶 1 ) −𝐻.!(𝐶(1)))&+⋯+(0𝑌!(𝐶 𝑚 )−𝐻.!(𝐶(𝑚)))&

𝑚
⋮

(0𝑌#(𝐶 1 ) −𝐻.!(𝐶(1)))&+⋯+(0𝑌#(𝐶 𝑚 )−𝐻.!(𝐶(𝑚)))&

𝑚

Assume that 𝜑' = min[Φ] ,
location set 𝒑 is voted to compute the current data

Restored Data Election

3𝑌% 𝑛, 𝑡 = 𝑓(𝑋J 𝑛, 𝑡 )

Current Data Generation

Eventually, data restoration at the
current time 𝑡 is accomplished

𝑅𝑀𝑆𝐸 =
(𝕐− F𝕐)&

𝑚

In

Out

DI Model
Data Process

With Heterogeneous Data Interpolation

⋮



Symbol Description

𝑛 Number of data

𝑡 A certain time instance

𝐾 Number of locations

𝐶 Set of sequence number of available data in the horizon

𝑚 Number of available data in target data horizon

𝑖 A set of location of target data and 𝑖 ∈ [1, 𝐾]

𝑗 A set of other locations and 𝑖 ∪ 𝑗 = 𝐾

𝑌+(𝑛, 𝑡) Target data at time 𝑡

+𝑌+(𝑛, 𝑡) Available target data at time 𝑡

3𝑌+(𝑛, 𝑡) Unavailable target data at time 𝑡

0𝑌+(𝑛, 𝑡) Restored data by heterogeneous data

+𝑌+(𝐶(1:𝑚) Available target data in horizon

𝑋!:#(𝑛, 𝑡) Set of other heterogeneous data at time 𝑡

𝑋!:#(𝐶(1:𝑚)) Heterogeneous data in horizon at the same moment with target data

𝐴9) Percentage of available data in horizon

𝐻3!:# Horizon of other heterogeneous data

𝐻.+ Horizon of target data

𝜃: Threshold of target data

ℎ Determined length of horizon (ℎ = 120 data equal to 10 min)

𝑝 Set of locations determine the minimum root mean square error (RMSE)

𝑞
Set of locations determine the maximum absolute Pearson correlation 
coefficient

Algorithm DI Model with Heterogeneous Data Interpolation 

Availability Identification

Data Preparation

DI Model with Heterogeneous 
Data Interpolation

DI Model Data Restoration #1
Proposed Algorithm (Heterogeneous)



Available Data Aggregation

Available Heterogeneous
Data Aggregation

Data Transformation

Restored Data Election

𝐻.*
/ =

𝐻.*(#)
𝐻.*(&)
𝐻.*(')
𝐻.*(()
⋮

𝐻.*(%-!)

=
𝑌((!)(𝑛 −ℎ) ⋯ 𝑌((!)(𝑛 −1)

⋮ ⋱ ⋮
𝑌((#*+)(𝑛 −ℎ) ⋯ 𝑌( #*+ (𝑛 −ℎ)

Homogeneous Data Aggregation

Integrate the homogeneous data into matrix
Therefore, we have a synchronous “mirror”

matrix with homogeneous data

(𝐻.*(𝐶))
/=

𝐻.* # (𝐶)
𝐻.* & (𝐶)
𝐻.* ' (𝐶)
𝐻.* ( (𝐶)

⋮
𝐻.* %-! (𝐶)

=
𝑌((!)(𝐶(1)) ⋯ 𝑌( ! (𝐶 𝑚 )

⋮ ⋱ ⋮
𝑌((#*+)(𝐶(1)) ⋯ 𝑌((#*+)(𝐶(𝑚))

Available Homogeneous Data Aggregation

𝜌𝕐,.* =
𝑐𝑜𝑣(𝕐,𝑌()
𝜎𝕐𝜎.*

Ρ =

𝜌𝕐,.*(#)
𝜌𝕐,.*(&)
𝜌𝕐,.*(')
𝜌𝕐,.*(()
⋮

𝜌𝕐,.*(%-!)

=

𝑐𝑜𝑣(𝕐,𝑌((!))
𝜎𝕐𝜎.*(!)

𝑐𝑜𝑣(𝕐,𝑌((&))
𝜎𝕐𝜎.*(&)

𝑐𝑜𝑣(𝕐,𝑌((7))
𝜎𝕐𝜎.*(7)

𝑐𝑜𝑣(𝕐,𝑌((8))
𝜎𝕐𝜎.*(8)

⋮
𝑐𝑜𝑣(𝕐,𝑌((#*+))
𝜎𝕐𝜎.*(#*+)

Assume 𝜌𝕐,$= = max Ρ
most correlative homogeneous data

are located at 𝑞

Maximum Likelihood
Estimator

𝜑> =
(𝕐− F𝕐?)&

𝑚
𝜑a > 𝜑J

F𝕐? = 𝑌>(𝐶) +
𝜌𝕐,..
𝜌𝕐,..

b
1
𝑚 c

!

@

𝐻.! 𝐶 𝑚 −c
!

@

𝐻.. 𝐶 𝑚

Vector Projection

Project the available homogeneous vector to
target vector with predict error

0𝑌+ 𝑛, 𝑡 = 𝑌> 𝑛, 𝑡 +
𝜌𝕐,..
𝜌𝕐,..

b
1
𝑚 c

!

@

𝐻.! 𝐶 𝑚 −c
!

@

𝐻.. 𝐶 𝑚

Current Data GenerationCurrent Data Generation

Heterogeneous Data 
Aggregation

𝜑U

𝜑V

In

Out Out

DI Model
Data Process

(Heterogeneous)

Assign the predict error to current homogeneous data at location 𝑞

𝜌： Pearson correlation 
coefficient
𝑐𝑜𝑣: covariance
𝜎: standard deviation 

No

Yes

DI Model Data Restoration #2
With Heterogeneous & Homogeneous Data Interpolation



Symbol Description

𝑛 Number of data

𝑡 A certain time instance

𝐾 Number of locations

𝐶 Set of sequence number of available data in the horizon

𝑚 Number of available data in target data horizon

𝑖 A set of location of target data and 𝑖 ∈ [1, 𝐾]

𝑗 A set of other locations and 𝑖 ∪ 𝑗 = 𝐾

𝑌+(𝑛, 𝑡) Target data at time 𝑡

+𝑌+(𝑛, 𝑡) Available target data at time 𝑡

3𝑌+(𝑛, 𝑡) Unavailable target data at time 𝑡

0𝑌+(𝑛, 𝑡) Restored data by heterogeneous data

+𝑌+(𝐶(1:𝑚) Available target data in horizon

𝑋!:#(𝑛, 𝑡) Set of other heterogeneous data at time 𝑡

𝑋!:#(𝐶(1:𝑚)) Heterogeneous data in horizon at the same moment with target data

𝐴9) Percentage of available data in horizon

𝐻3!:# Horizon of other heterogeneous data

𝐻.+ Horizon of target data

𝜃: Threshold of target data

ℎ Determined length of horizon (ℎ = 120 data equal to 10 min)

𝑝 Set of locations determine the minimum root mean square error (RMSE)

𝑞
Set of locations determine the maximum absolute Pearson correlation 
coefficient Algorithm. DI Model with Heterogeneous Data Interpolation 

Availability Identification

Data Preparation

DI Model with Heterogeneous 
Data Interpolation

Availability Identification
Heterogeneous Data Preparation

DI Model with Heterogeneous 
Data Interpolation

Homogeneous Data Preparation

DI Model with Homogeneous
Data Interpolation

Algorithm DI Model with Heterogeneous & Homogeneous Data Interpolation 

DI Model Data Restoration #2
Proposed Algorithm
(Heterogeneous & Homogenous)



Temperature

Relative
Humidity

Solar
IrradianceDate & Time

Geographical
Information 𝑅,-./0 : global solar irradiance 𝜏, : radiative transmittance due to cloud extinction 𝑅𝐻: relative humidity

𝑅1,,-./0 : surface solar beam irradiance 𝜏1,,-./0 : solar beam radiative transmittance under clear skies  𝑇: temperature (Kelvin) 

𝑅3,,-./0 : solar diffuse irradiance 𝜏3,,-./0 : solar diffuse radiative transmittance under clear skies ℎ: solar elevation(radian)

𝑅4 : solar radiation at the top of the atmosphere 𝜏56 : radiative transmittances due to ozone absorption ∅: latitude 

𝑚: air mass 𝜏7 : radiative transmittances due to water vapour absorption z: surface elevation form the mean sea 
level

𝑚8: air mass pressure-corrected air mass 𝜏9 : radiative transmittances due to permanent gas absorption

𝛽: Angstrom turbidity coefficient 𝜏/: radiative transmittances due to aerosol extinction

𝐻:: the scale height of isothermal atmosphere 𝜏0: radiative transmittances due to Rayleigh scattering

𝑙 = 0.44 − 0.16 [( ∅ − 80)/60]&+[(𝑑 − 120)/(263 − ∅ )]&
𝑤 = 0.00493(𝑅𝐻)𝑇*!exp[26.23 − 5416𝑇*!]
𝛽 = (0.025 + 0.1 𝑐𝑜𝑠&∅)exp(−0.7𝑧/1000)

𝑚? = 𝑚 g 𝑝/𝑝A
𝑝 = 𝑝A g exp −

𝑧
𝐻/

𝐻/ = 8340m

𝑚 = 1/[sin(ℎ) + 0.15(57.296ℎ + 3.885)*!.&C7]

̅𝜏DE = exp[−0.0365(𝑚𝑙)A.F!7G]
̅𝜏H = min[1.0, 0.909 − 0.036ln(𝑚𝑤)]

̅𝜏I = exp(−0.0117𝑚?A.7!7J)
̅𝜏K = exp{−𝑚𝛽[0.6777 + 0.1464(𝑚𝛽) − 0.00626 𝑚𝛽 &]}*!.7

̅𝜏L = exp[−0.008735𝑚? 0.547 + 0.014𝑚? & − 0.00038𝑚?& + 4.6 ∗ 10*G𝑚?7]*8.AM

̅𝜏",NOPKL ≈ 0.5 [ ̅𝜏DE ̅𝜏H ̅𝜏I 1 − ̅𝜏L ̅𝜏K + 0.013]
̅𝜏Q,NOPKL ≈ max(0, ̅𝜏DE ̅𝜏H ̅𝜏I ̅𝜏L ̅𝜏K − 0.013)

𝑅Q,NOPKL = 𝑅A ̅𝜏Q,NOPKL
𝑅",NOPKL = 𝑅A ̅𝜏",NOPKL

𝜏N = 0.4560 +
0.3566𝑛

𝑁
+ 0.1874(𝑛/𝑁)&

𝑅NOPKL = 𝑅Q,NOPKL + 𝑅",NOPKL
𝑹 = 𝝉𝒄𝑹𝒄𝒍𝒆𝒂𝒓Solar Irradiance 𝑹

𝑌

𝑓(𝑋)

𝑋

Equations for Solar Irradiance Restoration
Solar Irradiance Data Restoration


