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Abstract—Smart Home is generally considered to be the final
solution for human living problem, especially for health care
of the elderly and disabled, power saving, etc. Human activity
recognition in smart home is the key to achieve home automation,
which enables smart services automatically run according to
human mind. Recent researches have made several progresses
in this field, however most of them can only recognize default
activities which is probably not needed by smart home services.
In addition, low scalability makes such researches infeasible out
of laboratory. In this work, we unwrap this issue and propose
a novel framework to not only recognize human activity, but
also predict it. The framework contains three stages: recognition
after the activity; recognition in progress and activity prediction
in advance. With the help of RFID tags, the hardware cost of
our framework is low enough to popularize. And the experiment
result shows that our framework can realize good performance
in activity recognition and prediction with high scalability.

Index Terms—Human Activity Recognition, Object Usage
Sensing, Activity Prediction, RFID, Smart Home

I. INTRODUCTION

Over the last few years, the Internet of Things (IoT) has
been greatly developed with the help of mobile computing,
edge computing and cloud computing. One of the most repre-
sentative applications is smart home, which has good prospects
in the future. In a typical smart home system, all the resources
and devices can be controlled by the platform. The long
term goal of smart home is to achieve automatically control
according to both environment and inhabitant. Thanks to the
advances of sensing technology, it is not difficult to obtain the
environment data such as: illumination, temperature, humidity.
However, there is still no practical solution to recognize human
activity at home to enable scenario-based smart services [1].
To make the smart home platform know more about their
host, human activity recognition (HAR) becomes an urgent
challenge to the researchers.

Rather than online consumer activity, activity of daily living
(ADL) usually can not produce any data for the computer
system. Thus, this causes the gap between inhabitant and
smart home system. To bridge this gap, existing work has
shown us a bright direction. The interaction between human
and devices could be the channel to recognize the activity.
Wearable devices have already been widely used in recent
years. Such devices equipped with different kinds of sensors
and microprocessor are put on human body to monitor the state
of human [2]. Represented by Apple Watch, smart watch and
smart wristband have the ability to recognize simple activities

Fig. 1. Three-stage framework to recognize and predict human activity in
smart home.

like waving hands, sitting still, etc [3], [4], [5]. However,
such activities do not contain semantic meaning, which is
more appropriate to be called gesture recognition or action
recognition [6]. These activities can not be directly used by
the smart home system to provide scenario-based services.
Another way to detect the interaction between human and
devices is to attach sensors to ubiquitous objects used by
human [7]. But, such smart electronic sensors rely on battery,
so that the size of these smart sensors is not small enough to
be attached to all the devices. Not to mention the cost of both
maintain and the price of themselves. It is worth noting that
passive RFID tags seem to have the ability to take place of
such sensors. And several works have been proposed to prove
that passive RFID tag is a good way to detect object usage
[8], [9]. On the basis of these researches, our work gets even
further results of activity recognition based on object usage.

In this paper, we deeply analyse the characteristic of human
activity in home environment firstly. This further clarified the
goal of HAR in smart home, that is to provide scenario knowl-
edge to the smart home platform to reach human centered
automatic service. Then, we propose RF-ARP framework to
recognize and predict the human activity in smart home, as
shown in Fig. 1. Different from address resolution protocol



(ARP) that translates IP address into MAC address, our RF-
ARP translates wireless RF signal to the human activity. The
framework mainly contains three stages: recognition after the
activity; recognition in progress and activity prediction in
advance. In the first stage, we utilize passive RFID tags to
detect the interaction between human and device and recognize
the high level activity by combining those low level activities
together. In this stage, we can make a record of what the
inhabitant have done. And in the second stage, we weight the
device by term frequencyinverse document frequency (tf-idf)
to make sure the significance of each device to each activity. In
this way, we will not have to give the recognition result after
the activity has completed. While in the third stage, we already
have the log of activity. Thus, we could use long short-term
memory (LSTM) network to model the ADL of the inhabitant.
So that the proposed framework will be able to predict the
next activity that perhaps happens after the current activity.
We finally test our framework with off-the-shelf equipment
and open source database, and the effectiveness and efficiency
of RF-ARP is proved.

To build such a system, there are several challenges we
have to face. The first one is object usage detection without
wearable devices. Existing work usually uses wearable RFID
reader to detect object usage according to the distance between
object and the hand of human [8]. While in our work, we use
fixed long distance antenna to cover as more region as possible
leading to the invalid of previous method. So we propose
a way to detect object usage by phase which is a physical
feature of RFID signal. The second challenge is concurrent
activities recognition. We come up with a task-oriented gener-
ative approach rather than discriminative approach, so that the
recognized result could be more than one activity. In addition,
traditional machine learning methods rely on training data,
which causes the so-called ‘cold start’ problem. Our approach
utilizes the prior knowledge to define the activity, and then the
training data is not required in the first stage. Thus, the upper
stages could be in motion after stage 1 producing enough data.

Compared with existing work on activity recognition in
smart home, our framework has multiple advantages on dif-
ferent aspects. First of all, scalability is the most important
strength of our approach, which is reflected on two aspects.
One is that we allow the smart home platform to define all
kinds of activities as it needs. The other is that our approach
cloud works in different houses, even when the objects and
devices are different from each other. Besides, our activity
prediction stage is going further than current HAR in smart
home. This may largely promote the fully automatic smart
home in the near future. The next strength is that our three-
stage framework unwraps the task to recognize high level
activity from wireless signal data. This brings huge flexibility,
because every stage can be optimized independently or even
replaced by other algorithms. For example, we can substitute
LSTM in stage three with any other time series data mining
algorithm, due to the labeled data provided by stage 1 can
be used to train different models. Last but not the least, both
the cost of RFID tags and computational complexity are low
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Fig. 2. Interactions and corresponding phase changes.

enough to implement our framework to current houses without
much effort.

II. DESIGN OF RF-ARP FRAMEWORK

In this section, we introduce in detail of our framework. The
basic idea is to combine the devices with inherent semantic
meaning and the interaction between human and devices to
detect the object usage. And then we infer the higher level
activity according the definition of each activity. With the log
of recognized activities, we weight the devices with tf-idf to
recognize the activity while it is in progress. And finally, we
utilize the LSTM to model the habit of ADL, and predict the
activity that the inhabitant might do later.

A. Object Usage Detection

Passive RFID tags are small and cheap enough to be widely
used in logistics, warehousing, etc [10], [11]. And researchers
have found that RFID tags can be used to detect the object
usage by attaching them on everyday objects [12]. Several
years before, Philipose et al. have used glove equipped with
near-field RFID reader to do such work by the state of readable
or not of tags [13]. While in our work, we chose long distance
antenna and UHF reader to do the same task. The reason is
that fixed long distance antenna can cover large area and scan
all of the tags in the area almost at the same time. And some
objects are not used by hand, such as chairs, beds, etc. Besides,
we do not require the inhabitant to wear any devices, so that
we also reduce the inconvenience to the inhabitant.

Phase is a back-scattered RF channel parameter, which can
be continuously read by UHF RFID reader. In our work, we
use Impinj R420 as the reader to obtain the phase value.
According to our previous research, phase is sensitive to the
interaction between human and RFID tags. As shown in Fig.
2, different interactions will change the phase value in varying
degrees. In Fig. 2(b), there is a human passing by the object
with a RFID tag. While in Fig. 2(a), the man walks to the
object and picks it up, then puts it back and walks away. This
inspires us to use the dispersion of the phase data in a sliding
window to distinguish interactions.



TABLE I
OBJECT USAGE DETECTION THROUGH INTERACTION.

Usage Tag state Interaction Objects

1
Covered Sitting, lying, blocking Chair, bed, sofa,

switch, etc

Picked up Picking up Knife, toothbrush,
chopsticks, etc

0
Interfered Passing by All

Still Absence All

Apart from the above interactions, people also interact with
big furniture without moving them, like bed, sofa, etc. In
these cases, the object usage can be detected by the phase
all the same. UHF RFID readers are able to scan the tags
several times in one second. In our verification experiment,
the average sampling rate for each tag is 12 times per second.
Although the reader can keep receiving the back-scattered
signal when the tag is interfered, it can not see the tag while
the tag is completely blocked. This enables us to use a simple
way to detect such interactions, as shown by Eq. (1).

covered = if((t0 − t1) > T ) (1)

In the above equation, t0 represent the current timestamp
and t1 represents the timestamp of previous round scanning.
And T is the threshold for the tag state. In this work, we set
T as one second to ensure enough sensitivity to detect short
term interaction. For some specific objects like bed, we can
increase T to detect the right interaction. Note that, when the
tag works as a switch, one more step is needed to translate
the interaction to equip state. The detail is introduced in our
previous work [14].

So far we have introduced the way to detect object usage,
and Table. I shows the way to determine the usage state. When
the tagged object is covered or picked up, it means the object
is being used and the usage state is set to ‘1’. Otherwise, when
the tagged object is interfered or still, it means the object is
not being used and the usage state is set to ‘0’. As depicted in
Fig. 3, the matrix with white background color is the example
of object usage array.

B. High Level Activity Recognition

To make sure the result of HAR is required by smart home
platform, the best solution is to grant smart home platform
the authority to define what it needs to know. Thus, we make
a rule to enable such authority. The definition of an activity
only includes the objects that will be used only in the activity.
For example, television has the semantic meaning that greatly
indicate the activity of ‘watching TV’.

As shown in Fig. 3, after the usage states of objects have
been detected, we build two queues to store the usage states.
‘On queue’ contains the object ID and the timestamp that the
object starts to be used. While the ‘Off queue’ contains the
object ID and the timestamp that the object ends using. In this
stage, the length of the queues is set as fixed one day. It means

Fig. 3. The usage state vector changes with time, and we can generate ‘On
queue’ and ‘Off queue’ respectively.

(a) No interruption between two objects

(b) Interruption between two objects

Fig. 4. We propose two strategies to determine the start time and end time.
O1 and O2 are objects that belong to one activity, and O3 belongs to some
other activity.

that the task of this stage is to make a record of activities that
have been done in the last one day.

Here, we can also take ‘watching TV’ as an example and
object No. 2 represents television. At t − 5, the television is
turned on , and it is turned off at t. So, we can say that the
activity of ‘watching TV’ has been acted, besides the start
time is t − 5 and the end time is t. However, this is merely
the single object activity. And generally speaking, high level
activity tends to include more than one objects. So, we set the
start time as when the first object is used, and the end time
is the last object ends using. However, when we do so, we
can not get the right end time. Because, the activity may be
interrupted by other activities. In this case, we are confused
about when the activity is end.

To overcome the above problem, we treat the object in the
definition individually as a subset of the whole objects set.
And two strategies are proposed to determine the start time
and end time, as shown in Fig. 4. In Fig. 4(a), there is no
‘On’ action between t1 and t3. It means that the activity is



ongoing continuously, although the usage of O1 ends before
the usage of O2 starts. So, we can merge the two subsets
to a new subset. The start time is still the timestamp of the
first object in the ‘On queue’. And the end time is set to the
timestamp of the last object in the ‘Off queue’. When the next
object belonging to the same activity start to be used, we check
the interruption as the same. If there is still no interruption,
then we keep merging the subset to the former subset and
reset the end time. While when there is interruption, we use
the strategy shown in Fig. 4(b). We can see that between t1
and t5, O3 has been used at t3. In this case, the activity is
interrupted by other activity. We cut the relationship between
the current subset and the former one that belongs to the same
activity. The former subset has finished at t2, so the end time
is set to t2. And the current subset becomes the initial subset,
and the start time is t5. While the end time is t6 and may be
rewritten by later subset.

C. Recognition in progress

In the first stage of our framework, we define the activity
with the objects that only used in this activity. Even though it
can record the log of activities that have been done efficiently,
the precision of start time and end time is not so satisfactory.
Besides, the definition of activity has limitations. There are
more objects can not be involved in the definition, because
they might be used by more than one activities. Thus, we
come up with an approach to extend the definition of activity
and recognize the activity with the new definition.

In the past research, tf-idf is commonly used in natural
language processing and information retrieval [15], [16]. It is
a numerical statistic that is intended to reflect how important
a word is to a document in a collection or corpus [17]. Due to
the ability to reflect the importance of element in frequency,
we utilize the tf-idf to weight the objects in definition of
activities. Before we calculate the tf-idf value of each object,
we have to generate the training data. In the first stage, the
interval between two activities is big, because of the too strict
definition. So, we extend the start time of one activity to the
end time of the former one and extend the end time of the
activity to the start time of the last one. The objects used to
exist between two activities are involved in two definitions of
activities on both sides. In this way, the definition of activity
is extended greatly.

Without loss of generality, we represent the set of objects
O as:
O = {o1, o2, ... , on}

where n is the amount of objects. The set of activities A is
denoted as:

A = {a1, a2, ... , am}
where m is the amount of activities. Also, we define the set
of activities in the process P ⊆ A.

In the log data, we count the frequency of every objects oi
(i ∈ n) that have been used in a specific activity aj and note
it as gji . Note that, we only care about that if the object has
been used in one round of the activity, ignoring the number
of times. If the object is used more than once in one round

of activity, we still count one in one round. And to reduce
the noise caused by the definition extension, we the equation
below as a high-pass filter:

gji =

{
0, gji < z ∗max(gji )

gji , otherwise
(2)

where z is a threshold set as 0.5 to control the filter in our
work. If the higher z we set, the more strict definition we get.
Particularly, if we set z to 1, the activity definition will be the
same in stage 1.

The term frequency tf j
i can be calculated by the equation

below:

tf j
i =

gji∑n
i=1 g

j
i

(3)

And the inverse document frequency idf j
i can be calculated

by Eq. (4) and Eq. (5)

idf j
i = log(

m∑m
j=1 fi,j(T )

) (4)

fi,j(T ) =

{
0, gji = 0
1, otherwise

(5)

After we get both tf j
i and idf j

i , the tf − idf j
i then can be

calculated as follows:

tf − idf j
i = tf j

i ∗ idf
j
i (6)

With the training data, we can finally generate a weight
matrix that illustrates the importance of each object to dif-
ferent activities. Then, we utilize this matrix to realize online
recognition.

Similar to the first stage, when a new object usage is
detected, the object ID i (i ∈ n) is put into ‘On queue’.
Then we start to check the weight matrix to find the maximum
tf − idf j

i and the corresponding j. In other words, the weight
matrix tells the most possible activity, since this object is most
representative to that activity. Then, we need to check the set
of activities in the process P to verify if this activity is in P
or not. If it is in the set P , we do not need to change anything
and keep waiting the next object usage state change. If the
activity is not in the set P , we then add the activity ID in P
and note the start time of this activity with current timestamp.

When a new object is detected to end the usage, we also
need to check the weight matrix with the object ID i. We
retrieve the activities whose tf − idf j

i are not 0, then pull out
all the relevant activities from the set P and set their end times
respectively. In addition, if the next activity is a part of the
activities that have just pulled out, we merge them together as
the first stage does and set their end time to empty.



Fig. 5. Activity sequence and RNNs model.

D. Activity Prediction with LSTM

In this research, we treat human activity prediction as a
time sequence predicting problem. We believe the inhabitants
act different activities in a relative fixed pattern. For example,
there is a user who always goes to watch TV after having
dinner according to the activity log. If the user is detected
to have dinner currently, then the next activity the user will
act is most probably watching TV. Such problem to predict
next state based on current state can be solved by classical
machine learning method. Nevertheless, the next activity has
relation with not only the current activity but also the previous
ones. So we introduce deep learning to this problem. RNN
performs well on spatial temporal predicting problems, such
as location prediction [18]. LSTM networks are a special kind
of RNN, which are proved to be more efficient [19]. LSTM
networks have the ability to memorize both long and short
term knowledge, which tally with human mind.

As depicted in Fig.5, this is a spread LSTM networks. X0

to Xt in this paper represents the activity log, and h0 to
ht represent the prediction result which is the next activity.
We can see that when the time stamp is t, the input of
the model is the current activity Xt and the past knowledge
remembered from t − 1 to t − n. It means the model can
predict the next activity using not only the current activity
but also the past several activities. This just accords with our
assumption that the activity does not happen randomly and
the motivation of next activity is what the human has done. In
this way, the prediction accuracy is higher than the classical
machine learning approach, because more knowledge is taken
into consideration to model the habit of inhabitant.

In addition, we also apply the method in stage 2 to the
process of prediction. Besides modeling the activity habit, we
also utilize LSTM to model the object usage habit. Therefore,
the next object that might be used can also be predicted by
LSTM. Then, we find out the relevant activities of the object.
Finally, we find the intersection of two prediction results to
further improve the performance of prediction. Knowing the
current activity and the current objects in use, we will be able
to predict the next activity with a relative high accuracy.

III. EXPERIMENT AND EVALUATION

In this section, we show the performance of the three-stage
framework to recognize and predict the activity of inhabitant.
Since we unwrap the HAR task into three stages, we test
performance of three stages respectively. To evaluate the part

of activity recognition, we conduct the experiment on open
source dataset. The dataset generated by Ordonez [20] includes
11 ADLs performed by the users on a daily basis in their own
house for 35 days. We chose this dataset because most sensors
in this dataset can be replaced by RFID tags to represent the
usage as the same.

A. Stage 1
We attach two RFID tags to two commonly used objects:

chair and toothbrush. And then, we ask the volunteer to do
specified interaction with the objects 50 times respectively
and note the tag states and corresponding usage states. Since
‘interfered’ and ‘still’ both represent no usage, we treat them
as one interaction. In Table. II, we set that:

• TP represents that usage has been right detected;
• TN represents that interference has been right detected;
• FP represents that interference is detected as usage by

mistake;
• FN represents that usage is detected as interference by

mistake.

TABLE II
THE RESULT OF OBJECT USAGE DETECTION.

Objects TP TN FP FN

Chair 50 49 1 0

Toothbrush 49 47 3 1

Then, the average accuracy can be calculated as 97.5%. And
the precision and recall are 96.1% and 99%. The performance
is good enough to prove that RFID tags can be used to detect
the object usage.

B. Stage 2
In the training part, we first classify the object usage data

according to their corresponding activity ID, and each activity
will contain several objects. Then, we calculate the weight of
objects in specific activity to generate the weight matrix. In the
testing part, we use the proposed approach to produce the log
of activities. After that, we compare the log with the ground
truth log of activities. If the label in ground truth log matches
the recognized log, we take a count of TP for this labeled
activity ID. If the ground truth activity ap is recognized as
other activity aq , we take a count of Fp,q .

Here, for easy understanding, we use the verify matrix to
represent the recognition result in this stage, as shown in Table.
III. As shown in the table, FN is the sum of the row apart
from the TP in this row, and FP is the sum of the column
apart from the TP in this column. FN represents the false
negative to the activity, and FP represents the false positive
to the activity. Then, the precision and recall can be calculated
by Eq. (7) and Eq. (8).

precision =
1

m

m∑
j=1

TPj

TPj + FPj
(7)



TABLE III
AN EXAMPLE OF THE VERIFY MATRIX OF TP , FN AND FP .

Activity ID 1 2 3 FN

1 TP1 F1,2 F1,3 FN1

2 F2,1 TP2 F2,3 FN2

3 F3,1 F3,2 TP3 FN3

FP FP1 FP2 FP3 -

recall =
1

m

m∑
j=1

TPj

TPj + FNj
(8)

According to the calculation, the average precision of our
framework in stage 2 is 85.7%, and the average recall is 87.3%.
In the experiment, we find that the main reason causes the false
recognition is the temporal-sensitive activities. In the dataset,
‘breakfast’, ‘lunch’ and ‘dinner’ are treated as three different
activities. Even though they are different in temporal space,
the main objects related with them are similar. While our
proposed framework does not take temporal knowledge into
consideration, and this makes it hardly to distinguish those
activities.

C. Stage 3

In the experiment, we build a typical LSTM model on
TensorFlow-GPU with Keras as the high level API. The
training epoch is set to 10000 to make sure the model is well
trained. There are 4 layers in the LSTM model: one input
layer, two hidden layer and one out layer. The loss is set
ascategoricalcrossentropy, and the optimizer is adam. The
timestep and neurons in hidden layers are hyperparameters.
And we adjust the hyper parameters to make the model reaches
the top performance.

We find that the test accuracy reaches to the top while the
timestep equals to 3. This means the LSTM model can utilize
the past 3 activities to predict the next activity and get the
highest accuracy, which accords with our assumption. Also,
the accuracy starts to decrease after that. It means that the
pattern of activities can not be too large, otherwise, too much
noise will be used.

We also compare our model with the classical Naive Bayes
method as shown in Fig. 6. Because the Naive Bayes method
only uses the current one activity to predict next activity. We
can see that our solution gets much higher accuracy than Naive
Bayes. The top two prediction accuracy reaches to 65.2%.
Moreover, when we apply the method in stage 2 to the process
of prediction, the accuracy will be as high is 78.3%

IV. CONCLUSION AND DISCUSSION

In this work, we present RF-ARP which is a three stages
framework to deal with the issue of HAR in smart home.
According to the usage of objects, our framework can infer
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Fig. 6. Accuracy of Naive Bayes and LSTM solution.

the high level activity and further predict the next possible ac-
tivity. Without any requirement to the inhabitant, the proposed
framework can be widely promoted to different house at a
relative low cost of both money and energy. The framework is
evaluated on an open source dataset of ADL. The recognition
precision can reach 85.7% and the prediction accuracy is
78.3% in the condition of two candidates. Compared with
existing work, our framework performs better.
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